Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to break through the specific energy limitations of commercial lithium-ion batteries given the high theoretical specific energy, environmental friendliness, and low cost.
The lithium–sulfur battery (Li–S battery) is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light (about the density of water).
A lithium-sulfur battery is a promising rechargeable system due to the high elemental abundance of sulfur, the high theoretical capacity of ~1600 mAh g −1, and high energy density of 2600 Wh kg −1. The cell voltage varies nonlinearly in the range between 2.5–1.7 V during discharge.
With a new design, lithium-sulfur batteries could reach their full potential. Image shows microstructure and elemental mapping (silicon, oxygen and sulfur) of porous sulfur-containing interlayer after 500 charge-discharge cycles in lithium-sulfur cell.
However, the sluggish sulfur reduction reaction (SRR) kinetics results in poor sulfur utilization, which seriously hampers the electrochemical performance of Li–S batteries. It is critical to reveal the underlying reaction mechanisms and accelerate the SRR kinetics.
Lithium-sulfur battery possesses high energy density but suffers from severe capacity fading due to the dissolution of lithium polysulfides. Novel design and mechanisms to encapsulate lithium polysulfides are greatly desired by high-performance lithium-sulfur batteries towards practical applications.
UC San Diego engineers developed a cathode material for lithium-sulfur (Li-S) batteries that is healable and highly conductive, overcoming longstanding challenges of traditional sulfur cathodes. The advance holds promise for bringing more energy dense and low-cost Li-S batteries closer to market.
Herein, the development and advancement of Li–S batteries in terms of sulfur-based composite cathode design, separator modification, binder improvement, electrolyte optimization, and lithium metal protection is summarized.
Lithium-sulfur all-solid-state batteries using inorganic solid-state electrolytes are considered promising electrochemical energy storage technologies. However, developing positive electrodes
Lithium–sulfur (Li–S) batteries represent one of the most promising candidates of next-generation energy storage technologies, due to their high energy density, natural abundance of